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Abstract

We define the notion of the decentralization of a deterministic input-output
machine. This opens the possibility for introducing game-theoretic structures
inside the machine, as part of its design.
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1 Introduction

A key feature of “decentralization” is that a complex system can be broken into
smaller constituents, each of which functions on the basis of information that is much
more limited than the total information prevalent in the system. Thus decentraliza-
tion is particularly useful when information is costly to disseminate or assimilate. A
prominent example (see, e.g., [1]) is that of a free market economy, where each agent
simply optimizes against prices, ignoring all his competitors; and yet effi cient trade is
achieved collectively in equilibrium. Another example (see, e.g., [3]) involves “local
economic networks”in which each individual interacts with a small set of neighbors,
oblivious of the rest of the participants, but the ramifications of his actions can be
felt throughout the system.
The purpose of this note is to explore the possibility of decentralization, not in a

traditional economic context, but in the design of “machines”. We restrict attention
to a deterministic machine f which maps finitely many inputs to outputs. A design
for f consists of smaller machines α in a hierarchical array. Each α receives, as

∗This is an elaboration of a special case of the model in [2]
†Stony Brook Center for Game Theory; and Cowles Foundation for Research in Economics, Yale

University
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input, the outputs produced by a subset of machines lower down in the hierarchy.
Based upon its input, α in turn decides what output to produce, and then transmits
this output to a subset higher up in the hierarchy. The design must, of course,
implement f in the following sense: for every initial input sent into the bottom level
of the hierarchy, the output at the top level is in accordance with f. Given any design,
we consider the complexity of communication between its constituent machines (or,
equivalently, the aggregate input across all its constituents). A decentralized design
for f is one that achieves minimal complexity.
Our purpose here is to give a definition of decentralized designs, and show that

they exist in fairly general circumstances. However, the question of the computation
of these designs, or even of some of their qualitative features (for different categories
of machines), is left for future exploration.
The special focus of this note is on designs that are quota-based and have reso-

nance with simple (voting) games.

2 A Canonical Case: Quota-based Designs

For any positive integer m, denote M = {1, . . . ,m} and QM = {0, 1}M ,i.e., QM is
the set of all sequences of 0′s and 1′s whose components are indexed by the elements
ofM (or, equivalently, the set of all maps fromM to {0, 1}). Consider a deterministic
input-output machine specified by a function

f : QN −→ QK

where N = {1, . . . , n} and K = {1, . . . , k}. Then f decomposes into its component
functions, or elementary machines

fi : QN −→ {0, 1}

for i ∈ K.
Our aim is to distribute the computation of f amongst an array of smaller ele-

mentary machines. First, each component sl of input s = (s1, . . . , sn) ∈ QN is sent
into an initial “dummy”machine l ∈ N , whose role is to merely transmit sl to el-
ementary machines α inside the array. Conditional on all inputs received from its
“predecessors”, α is programmed to produce 0 or 1 as output and to transmit this
output to its “successors”. The process iterates a finite number of times, until we
reach “terminal”machines, indexed by K. It is required, of course, that f be im-
plemented by the process, i.e., the output of i ∈ K be fi (s) for all s ∈ QN and all
i ∈ K.
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To be precise, consider nonempty, disjoint, finite sets Vt in “time periods”1 t =
1, . . . , T . The initial set V1 = N and the terminal set VT = K. For 2 ≤ t ≤ T − 1,
the intermediate sets Vt can be of arbitrary size.
Denote V = V1 ∪ . . . ∪ VT . There is a directed graph G = (V,E) with vertex set

V and edge set E ⊂ V × V. If (α, β) ∈ E is a (directed) edge from α ∈ Vl to β ∈ Vt,
we require l < t; i.e, the arrow of time points forward. For any vertex α ∈ V, denote
its predecessor set by

Pα = {β : (β, α) ∈ G}
and its successor set by

Sα = {β : (α, β) ∈ G}
Clearly Pα is empty for α ∈ V1; and Sα is empty for α ∈ VT . All other Pα and Sα

are required to be nonempty.

Notation 1 V− = V2 ∪ . . . ∪ VT

Each vertex α ∈ V− corresponds to an elementary machine whose operation will
be described below.
In contrast, vertices in V1 are “dummy”machines and play the role of “initial-

izing” the computational process. For any s = (sl)l∈N ∈ QN , the input as well as
output of l ∈ V1 = N is sl; thus the simple purpose of l ∈ V1 is simply to receive the
data sl from s and to move sl on as input to all2 its successors Sl.
As for the machines α ∈ V−, an input µ consists of 0′s and 1′s indexed by the

set Pα of α’s predecessors, from whence they came. Based upon µ, the elementary
machine α first produces an output of 0 or 1; and then transmits this output to
the set Sα of its successors. The output of α ∈ V− is determined from its input in
accordance with a given function, or program3,

πα : {0, 1}Pα −→ {0, 1}

Notation 2 Let Π denote a class of “available”programs (which includes the iden-

tity map from {0, 1} to itself4).
1“Time”is just a metaphor for arranging machines in layers that are totally ordered.
2More generally, the subset of Sα to which the output of α is transmitted, may also be allowed

to depend on the input string at α (see [2] for more details).
3Technically speaking, a program is a priori given as a map from {0, 1}M to {0, 1} where

M = {1, . . . ,m} for some integer m. It can be applied at α by first setting up a bijection between
M and Pα (the predecessor set of α ), and thus allows for many variations, one for each bijection.
All these variations are understood to be equally available.

4Recall that the identity map is applied at all the initial vertices in V1.
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(Note that the length of the input-string may vary across the different programs5

in Π, but the output of all programs is of length one, since it is either 0 or 1. )

Definition 3 N =
{
G, {πα}α∈V−

}
is called a Π-design for f if πα ∈ Π for all α ∈ V ;

and if, furthermore,
fi(s) = output of i

for every s = (s1, . . . , sn) ∈ QN and every i ∈ K = VT . Also, N is just called a
design if it is a Π-design for some Π.

Let us consider the scenario where Π is a resource which has been acquired (“paid
for”) already; in other words, we have free access to “black boxes”, each of which may
operate according to any program in Π of our choosing. The complexity of a design
is then just the complexity of communication between the black boxes. Now notice
that, in the design N =

{
G, {πα}α∈V−

}
for f : QN −→ QK , where G = (V,E) , the

black boxes are represented by the vertices in V which transmit information along
the directed edges E. Once an arbitrary input s ∈ QN is sent into the initial layer
V1 = N, exactly one bit of information flows on each edge of E, until we wind up
with f(s) = (fi(s))i∈K at the terminal layer VT = K. This motivates the definitions
below:

Definition 4 The complexity χ(f,N ) of communication in a designN =
{
G, {πα}α∈V

}
for f is the number of edges of its graph G.

Definition 5 The complexity of communication for f modulo Π is

χ (f,Π) = min {χ(f,M) :M is a Π-design for f}

Definition 6 A Π-design N for f is said to be decentralized if χ(f,N ) = χ (f,Π)

Remark 7 It is evident from the definitions that if there exists a Π-design for f,
then there also exists a decentralized Π-design for f .

5W.l.o.g the length of the input strings may be assumed to have a finite upper bound (see, e.g.,
Remarks 8 and 10 below).
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2.1 Monotonic Maps

Let s, t ∈ QN , and write s ≥ t if sl ≥ tl for every component l ∈ N. Consider the
case when, for every i ∈ K, the component map fi is monotonic, i.e., fi(s) ≥ fi(t) if
s ≥ t; and, to avoid trivialities, assume fi(0, . . . , 0) = 0 and fi(1, . . . , 1) = 1.
The following analogy from cooperative game theory will be useful. Each fi can

be considered a simple (or, voting) game vi on the player set N as follows: an input
s = (sl)l∈N ∈ QN is identified with the coalition T (s) = {l ∈ N : sl = 1} ⊂ N ; and
T (s) is called winning in vi if fi(s) = 1, and losing if fi(s) = 0.

2.2 Quota-Based Designs for Monotonic Maps

Consider the class Π∗ of quota-based programs, under which a machine simply counts
the number of 1′s (or, 0′s) in its input string and outputs 1 (or, 0) if, and only if,
this number exceeds some prescribed "quota".

A Π∗-design for f : QN −→ QK will be also called quota-based.
Let us exhibit a “naive”quota-based design for every fi ,where i ∈ K, and then

collate these into a naive quota-based design for f. In the naive design, each quota
will in fact be maximal, i.e., correspond to the unanimity rule.
The vertices V of the underlying graph G = (V,E) consist of three disoint tiers:

V=V1 ∪ V2 ∪ V3. Here V1 = N = {1, . . . , n} and V3 = {i}. The middle tier N2 has as
its elements the collectionWi of minimal winning coalitions of vi, namely coalitions
that are winning in vi and all of whose strict subsets are losing in vi.
Given any input string s ∈ QN , its component sl enters the vertex l ∈ N = V1 as

input, and from there it is transmitted (unaltered) to all vertices T ∈ Wi = V2 such
that l ∈ T. Next, the vertex T outputs 1 if all the components of its input string6

are 1, otherwise it outputs 0 (i.e., the quota at T is just the cardinality of T , and
T operates via the “unanimity voting rule”). The output from each T ∈ Wi is next
transmitted to the unique element i of the singleton set V3. The output of this final
vertex i is 0 if all the components of its input string7 are 0; otherwise the output is
1. The transmission of information is along the directed edges of the graph G; and so
—to be pedantic —the edge set E of G is given by E= {(l, T ) ; l ∈ V1, l ∈ T ∈ V2} ∪
{(T, i) : T ∈ V2} .
It is clear that that this design implements fi, i.e., for any input s ∈ QN at

V1, the output at i ∈ V3 is fi (s) . Now we simply collate the designs of all fi, for

6these components are indexed by T
7Recall that these components are indexed by Wi. Note moreover that, looking at 1′s in the

input string at T3 (instead of 0′s), we may equivalently consider a quota of one (instead of the
unanimity rule), i.e., the output is 1 if the number of 1′s in the input string is at least one.
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1 ≤ i ≤ k, to obtain a design for f. The bottom tier of vertices is inchanged and
remains N = {1, . . . , n}. The middle tier is W1 ∪ . . . ∪ Wk and the final tier is
{1, . . . , k} . Transmissions take place along directed edges from bottom to middle
and middle to top, as described above.
However this naive design for f , based on unanimity rules, may be far from

minimal . By way of example, suppose that vi corresponds to a simple majority
game, i.e., a string is mapped to 1 precisely when half or more of its components are
1. Then it would be much better to construct a design for fi as follows: map all the
outputs of N1 to a single centralized vertex in N2 and let the quota at this vertex be
the smallest integer that is greater than, or equal to, n/2.
Thus the naive design only assures us that there exists a decentralized quota-

based design for f , but provides little clue as to what it looks like or how to compute
it from f. This seems like a topic that might merit investigation.

Remark 8 The collection C of minimal winning coalitions of a simple game on
player-set N = {1, . . . , n} form a “clutter”, i.e., if S, T ∈ C and S ⊂ T then S = T.
By [4], the cardinality of C is bounded above by g(n) = n!/(m!(n−m)!) where m is
the smallest integer above n/2. Thus, by way of a gross overestimate, the edges of a
naive quota-based design are no more than g(n)nk. This then also serves as a bound
for χ(f,Π∗) for an arbitrary f : QN −→ QK , so long as f is monotonic.

2.3 General maps

In the general case, when the fi are not monotonic, replace Wi by the set of all
winning coalitions of the game vi that corresponds to fi, and repeat the above con-
struction to obtain a quota-based design. (This design works, of course, in the
monotonic case as well; but we get a much sparser design by restricting to minimal
winning coalitions, in the monotonic case.)

3 Unrestricted Designs

It is evident that the complexity of communication for f diminishes as the set of
available programs is enhanced, i.e., χ (f,Π) ≤ χ (f,Π′) if Π ⊃ Π′. But there is a
limit to the dimunition.

Definition 9 The quintessential complexity of communication for f is

χ(f) = χ(f, Π̃)
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where Π̃ denotes the set of all possible programs (equivalently: χ(f) = min {χ (f,Π) : Π is arbitrary}).

Remark 10 For f : QN −→ QK consider the design whose graph has vertex set
V = N ∪ K and edge set E = {(l, i) : l ∈ N and i ∈ K} . And let the program at
i ∈ K be simply the component function fi of f. It is immediate that this design
implements f and that its complexity of communication is nk where n and k are the
cardinalities of N and K respectively. It follows that

χ(f) ≤ nk

This in turn implies that w.l.o.g. we might as well restrict attention to programs in
Π̃ whose input strings have length no more than nk.

4 Remarks

Remark 11 (Complexity of Programming) We have ignored the “programming
complexity”at each vertex, i.e., the complexity of its input-output map (which is why
we referred to the vertex as a “black box”). However, in the special context of quota-
based programs, it might make sense to define the complexity of a vertex to be simply8

its quota q. Indeed, by way of a concrete physical model, think of the transmission of
1 (or, 0) as sending an electical impulse (or, no impulse). Imagine that each vertex
is equipped with an internal clock plus a counter. Then a vertex in Vt will need to
count the impulses it has received by time t in order to decide whether or not to put
out an impulse; but it can stop counting once the total reaches q. One may therefore
define the programming complexity of a design to be the sum of the quotas of all the
vertices, and take this into account along with the complexity of communication, in
order to define effi cient designs. For further elaboration of this theme, see [2].

Remark 12 (Influence of Inputs and Banzhaf Indices) Consider f for which
each component map fi is monotonic. One might well ask how “influential”is input
component l? To be precise: if the component sl is unilaterally altered (from 1 to 0,
or 0 to 1) in every s ∈ Qn, how many components of the output would get changed?
Let this number be denoted hl (s) for each s ∈ Qn. Then (implicitly regarding every
s ∈ Qn as equally likely) we may define

∑
s∈Qn hl(s) to be the influence of input

8There is a related literature on “circuit complexity”, which defines the complexity of an arbitrary
program via Boolean "gates" (namely: and, or, not), as was pointed out to me by Yakov Babichenko.
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l on f . It is easy to see that the vector
(∑

s∈Qn hl(s)
)
l=1,...,l

is a scalar multiple
(the scalar being 2n or 2n−1, depending on the convention of counting) of the vector(∑

1≤i≤k βl(vi)
)
l=1,...,l

,where βl is the Banzhaf index of player l in the simple game
vi that corresponds to fi.

Remark 13 (Noncooperative Games) We have incorporated some aspects of co-
operative game theory, namely simple games, into the machine. In [2], we point out
how non-cooperative games may also have a bearing.
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