PHYSICS~452/562--FALL~2024

ATOMIC PHYSICS AND LASERS

Lecture: $T\theta - 11:30 - 12:50$ as of June 18, 2024 Harold Metcalf - S225 - 632-8185 or 8036 Room: Physics S-265 subject to change harold.metcalf@stonybrook.edu Text: van der Straten & Metcalf (Cambridge) find it at https://doi.org/10.1017/CBO9781316106242

Text: Milonni & Eberly, 2nd Edition (Wiley)

Text: Milonin & Eberly, 2 Edition (Wiley)			
Week #			
Monday	Tuesday	Thursday	Reading & Homework
date			
Background in Atomic Physics and Quantum Mechanics.			
I	Historical Background	Schrödinger Equation(s)	vdS & M: Ch. 1, 2.1, 2.2
8/26	Classical models	Multiple solutions	Problem set #1
II	Rabi and Bloch view	More on Bloch sphere	vdS & M: Ch. 2,; M&E: 9.1-9.3
9/2	for two-level atom	Dressed atom picture	Prob. set #2
III	Separate S.E. for H atom	Fine structure	vdS & M: Ch. 7, 8.1 - 8.5, 8.A, 8.B
9/9		Relativity and spin-orbit	Problem set # 3
IV	Quantum defects	Hyperfine structure	vdS & M: 9.1 - 9.3, 10.1 - 10.3
9/16	Other Atoms		Problem set # 4
V	Selection Rules	A and B Coefficients	vdS & M: Ch. 3.2.1, 3.3, 3.5, 5.1, 5.2
9/23	Zeeman, Stark & dipole	Stimulated Emission	vdS & M: Ch. 11; Problem set #5
		Quantum Transitions, Ω_R	
VI	21 st Century Revolution in	First Mid-term Exam	vdS & M: Ch. 5 and M & E: Sec. 3.7
9/30	Quantum Mechanics	In Class (closed book)	
	Superposition, Entanglement		
Laser Operation and Types of Lasers.			
VII	Introduction to Lasers	Longitudinal Modes,	M & E, Ch. 1
10/7	Three and Four levels	Single Mode - Lamb dip	M & E, Ch. 4, Sec's. 1-12
,	Gain - Rate Eq's	Saturated Absorption Spect.	M & E, prob's. 3.10, 4.1
VIII	NO CLASS	Gas Lasers: HeNe, CO ₂ , Ar ⁺	M&E, Sec's. 5.8 - 5.11
10/14	HOLIDAY		
IX	Molecules & Dye Lasers	Semiconductor Lasers	M & E, 11.12 - 11.15, 15.1, 15.2
10/21	Ring Cavity	I & T dependence for diodes	no prob's - catch up
X	Solid State Lasers	Gaussian Beams and Confocal	M&E, 11.3 - 11.11
10/28	Nd:YAG & Ti:Sapphire,	Fabry-Perot Resonances,	M&E, 7.1-7.9, espec. 7.5 & Table 7.1
			M & E, prob's. 11.4, 11.7, 11.9
XI	Modulators & Frequency	Non-Linear Optics	M&E 8.6, 8.7, 14.7
11/4	control, Bay, Luther, & White	Harmonic Generation	
	Pound, Drever, Hall		
	Saturation Spectroscopy		
Applications of Lasers - Nobel Prizes.			
XII	Laser Cooling & Temp. Limit	Magnetic Traps & Optical	M&E 14.4, 14.5
11/11	Breaking the Limit	Lattices For Neutral Atoms	·
XIII	Bose-Einstein Condensation	Trapping and Confinement	M&E 14.4 - 14.6
11/18		Optical Tweezers	prepare for exam
XIV	Second Mid-term Exam	NO CLASS	M&E All of ch. 14; prob's 14.6,
11/25	In Class (closed book)	THANKSGIVING	14.8a, 14.9a,b, 14.11, 14.14, 14.21
XV	Frequency comb	Fiber Optics & Lasers - Limits	
12/2		to Telecom – Nanofibers	

(Required Statement)

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Any suspected instance of academic dishonesty will be reported to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/

How the Course is Graded

HOMEWORK

Homework problems will be assigned regularly from either distribution in class (and posting on Brightspace) or taken from the text by Milonni and Eberly. They will be graded only when they're received on paper. Assignments submitted by email overtax my printer (it's not a commercial printer) so I will not print and grade them. They could be submitted on time by email, followed by paper mailed versions that will be checked against the email and then graded. Any other way of getting the paper version to me is OK.

EXAMS

There will be two exams, currently scheduled for 5 October and 23 November (subject to change). Exams will be given at announced times in the classroom (S-265). Exemptions from this policy can be granted only by the Student Accessibility Support Center (SASC).

GRADES

Grades will be based approximately equally on these two aspects of the course, with a boost given to those students who participate actively in class.