Templated dentin formation by dental pulp stem cells on banded collagen bundles nucleated on electrospun poly (4-vinyl pyridine) fibers in vitro
Eventhought it is well estbished that materials can promote stem cell differentiation, hard tissue formation is a templated process for which little is known regarding the in vitro process. We have found that surface curvature enables self-assembly of triple helical collagen fibrils into banded bundle structures from rat tail and human collagen secreted by dental pulp stem cells. Collagen fibrils were adsorbed at 4°C on spun cast P4VP films and electrospun fibers. Protein adsorption was observed on both surfaces, but large banded bundles with a uniform spacing of approximately 55 nm were present only on the fiber surfaces. SEM/EDS mapping showed that dental pulp stem cells plated on the same surfaces biomineralized copiously only along the electrospun fibers. Raman spectroscopy indicated that despite the presence of hydroxyl apatite ratio similar to natural dentin from human teeth. RT-PCR indicated up regulation of collagen, osteocalcin and dental sialophosphate protein, confirming that odontogenic differentiation is promoted only on the fiber scaffolds. Taken together the results indicate that, in addition to surface chemistry, the supermolecular structure of ECM collagen, which is essential in directing DPSCs differentiation and templating biomineralization, can be modified by the underlying surface morphology. *Zhang L, Yu Y, Feng K, Chuang YC, Zuo X, Zhou Y, Chang C, Simon M, Rafailovich M. Acta Biomaterialia 2018; 76:80 |